Т. М. Великанова. В начальной и средней школе — одна математика

Хотя начальная и средняя школы у нас, как правило, организационно и территориально объединены, в отношении преподавания они оторваны друг от друга. Единства и преемственности нет даже в изучении тех предметов, которые в той и другой школах по праву считаются важнейшими — родного языка и математики. Учителя, преподающие их в средних и старших классах, слабо представляют себе, каким образом они изучаются в начальной школе, и еще более слабое представление имеют учителя начальных классов об их дальнейшем изучении. Такое положение освящено традицией. Но ведь традиция эта восходит к тем временам, когда начальная школа и средняя школа были не звеньями одной системы образования, а разными системами образования, предназначенными для разных сословий. Может быть, пора от нее отказаться?
Мы публикуем здесь статью, в которой автор, опираясь на собственный опыт, показывает преимущества единого курса математики для начальной и средней школы.

Какие цели и задачи стоят перед учителем, преподающим математику? Начну с начальной школы. В начальной школе первая и всеми признаваемая цель — научить элементарным приемам и навыкам счета. Вторая, не менее важная, — обеспечить успех каждому ученику. Успешность или неуспешность ученика в начальной школе во многом определяет его отношение к учебе, к школе вообще, и иногда всю его дальнейшую судьбу. Третья цель (в равной степени относящаяся и к средней школе) — привить вкус и любовь к интеллектуальной деятельности, обеспечить возможность творческого, поискового подхода к тому, чему его учат. В средней и старшей школе цели, конечно, шире, и одна из главных целей, как мне кажется — научить ребенка понимать, что мир сложен, но не хаотичен; что то, что мы изучаем (и как мы изучаем), — это всегда модели сложного, но реального; и, наконец, что любая модель действует в ограниченной области, и очень желательно знать границы применения модели.
Я веду математику в начальной школе и продолжаю в тех же классах до седьмого или восьмого. Такая организация преподавания математики имеет существенные преимущества перед обычной, когда математику в начальной школе ведет учитель начальных классов. Я уверена, что математическому мышлению следует обучать с первого класса.
Здесь я хотела бы поделиться своим опытом, некоторыми идеями и приемами, которые помогают мне достигать (не всегда и не со всеми, конечно) перечисленных выше целей. Сначала назову эти идеи и приемы, а затем приведу примеры конкретных тем и задач.
Первое — идея «опережения». Многие понятия и даже разделы математики, которые даются в средних и старших классах, следует вводить уже в начальной школе. Это не означает, что их нужно «пройти» раньше, нужно только начать раньше. Пропедевтика сложного на более простом материале существенно облегчает прохождение этого сложного в дальнейшем. Дети радуются, встречая уже знакомые им вещи, о которых теперь можно узнать больше, или иначе, или в другом контексте. Задачу, которую они решали во втором классе методом «подбора», оказывается, можно решить в шестом или в восьмом классе с помощью уравнения, гораздо быстрее. Вычислительные приемы, которые учитель давал без объяснения (с обещанием объяснить в старших классах, «почему так получается»), оказывается, можно легко обосновать с помощью алгебры. И так далее. Идея «опережения» реализуется не только в отдельных темах, но и в ряде понятий и языковых конструкций, используемых в продолжение всего курса и постепенно математизируемых. Такие понятия, как «множество», «все», «каждый», «некоторые», максимум и минимум на некотором множестве, истинность и ложность утверждения, утверждение и его отрицание и т. д. вполне доступны ученикам начальной школы, а задачи, для которых эти понятия необходимы, неизменно вызывают интерес.
Вторая идея — необходимость организации таких видов деятельности ребенка и таких задач, в которых может быть проявлена самостоятельная, поисковая активность ученика. Традиционно в начальной и средней школе основное время уделяется изучению правил и процедур, а роль задач скорее иллюстративная. Сами же задачи — очень искусственно сконструированые модели, где все необходимые данные присутствуют, ничего лишнего нет, и ответ всегда получается «хороший». При этом однотипных задач много, и весь набор задач сводится к нескольким типам. В результате сильный ученик решает задачу сразу, а слабый ждет, когда решение появится на доске, и обоим скучно. В качестве «поисковых» задач можно давать такие, которые в начальной школе нельзя решить иначе, как «подбором». Такие задачи требуют времени и готовности пробовать. Учителю же нужно помочь ученикам в записи проб. Приученные к такой форме работы ученики не говорят: «мы таких задач не проходили», а начинают сразу действовать. У учителя же появляется возможность наблюдать за процессом решения, помочь слабому ученику, подтолкнуть, довести до результата, похвалить. Очень важны такие задания, в которых ученики должны составить свои примеры, уравнения, задачи, удовлетворяющие заданным условиям. В таких заданиях тоже приходится пробовать, проверять, а в процессе поиска может быть найден, понят алгоритм составления такого уравнения или задачи. В средней школе в качестве «поисковых» задач можно давать реальные проблемы, возникающие в жизни (или в сказке!), решение которых имеет смысл не только тренировочный. Такую задачу ученик должен еще и «поставить», найти или узнать у учителя недостающие данные, отбросить лишние, выбрать необходимые математические процедуры и их последовательность, суметь все это записать удобным способом и т.д. На каждом этапе, естественно, возможна помощь учителя. Конкретные примеры таких задач будут даны ниже.
С идеей «поисковой» деятельности связана третья идея — работа в малых группах. Группы могут быть от двух до шести человек, могут быть составлены учителем, или «по желанию», или случайным образом, с помощью заготовленных номеров. В зависимости от задачи, которую предстоит решать, разбиение на группы можно делать по-разному. Важно, что дети могут обсуждать внутри группы и постановку, и способы решения задачи, и способы проверки, и даже разделять работу между собой, когда задача требует многих вычислений, например, проб. Обсуждение рождает идеи, идеи вызывают другие идеи, поиск пошел! В удачных случаях при наблюдении за работой такой группы возникало ощущение творческой атмосферы маленького научного коллектива.
Наконец, последний принцип, или прием: объединять все, что можно объединить; использовать все связи, аналогии, противопоставления и т.д. Поясню на примере. В учебниках есть задачи на скорость, на производительность, на наполнение бассейна и т.п. Ученику самому трудно понять, что задача на встречное движение двух поездов и задача о наполнении бассейна через две трубы с точки зрения математики — одна и та же задача; что «скорость» — это не только скорость поезда или машины, но и производительность. И если учитель поможет ученику увидеть эту общность, его понимание и умение решать такие задачи поднимутся на следующую ступень.
Теперь приведу примеры тем и задач, которые я использовала в первых — седьмых классах.

Пример 1. Выбор самого дешевого (или самого быстрого) способа доставки груза. Дается 2-3 вида грузовиков разной грузоподъемности, общий объем груза, цена за 1 рейс для каждого вида, время на 1 рейс и т.п. Задачу можно давать и в третьем, и в пятом, и в седьмом классе, варьируя данные. Степень сложности задачи меняется при этом очень сильно, но в любой постановке требует многих вычислений и выбора «лучшего» варианта по какому-нибудь параметру из нескольких возможных. В самом простом варианте это задача на «деление с остатком», в самом сложном — решение диофантовых уравнений.

Пример 2. Оклейка комнаты обоями. Даны параметры комнаты, размеры и цена одного рулона (видов обоев несколько). Нужно узнать, сколько и каких требуется рулонов, чтобы затраты были минимальными или не превосходили некоторой суммы. В последнем случае решений может быть несколько. Эту задачу, как и предыдущую, можно варьировать от самой простой (два вида обоев, оклеиваем одну стену) до значительно более сложной, когда, например, нужно учесть еще и периодичность рисунка.

Пример 3. Задачу приведу буквально: «Было 22 кролика. Каждая крольчиха родила 5 крольчат; из всех крольчат 20 оказались «мальчиками». Через год опять каждая крольчиха родила 5 крольчат. Всего стало 342 кролика. Сколько было крольчих сначала?». Задачу решали в пятом классе методом подбора, затем в седьмом с помощью уравнения.

Пример 4. Серия задач на решение уравнений в целых числах.
а) Кузнечик прыгает по размеченной дорожке (числовому лучу), например, вперед на 8 единиц и назад на 5 единиц. Как ему попасть в заданную точку 4 или в точку 14?
Задачи с кузнечиком годятся для любого класса, начиная с первого.
б) Как сварить яйцо в течение 7 минут, если у нас есть только двое песочных часов: на 8 и на 3 минуты? Дети пробуют, считают и в какой-то момент радостно обнаруживают, что это «та же задача про кузнечика». в) Та же задача с песочными часами, но у нас есть трое различных часов и нужно найти самый быстрый способ.

Пример 5. Серия задач на комбинаторику. Эта серия бесконечна, и каждый учитель может составить множество задач для уровня своего класса, начиная с первого, когда перебор делается на реальных объектах.

Пример 6. Тема «Геометрия». Мои ученики в последнем классе начальной школы и в 5-ом классе в течение двух четвертей раз в неделю занимались построениями с помощью циркуля и линейки. Были проделаны все основные геометрические построения: деление отрезка пополам, проведение перпендикуляра к прямой из заданной точки, построение биссектрисы угла, треугольника по трем сторонам и некоторые другие. Все построения делались, конечно, без теории, на основе здравого смысла и симметрии. Строили биссектрисы углов треугольника и обнаружили, что они пересекаются в одной точке; то же самое с медианами и высотами. Вопрос «почему так получается» остался открытым до изучения геометрии в седьмом и восьмом классах. Таких «открытых» вопросов постепенно у нас накапливается много, и момент, когда они «закрываются», всегда вызывает оживление.
В начальной школе понятия биссектрисы, медианы, высоты треугольника можно проиллюстрировать перегибанием бумажных треугольников. Опыт показал, что те дети, у которых была такая «предварительная» геометрия в третьем и пятом классах, гораздо лучше (и с большим удовольствием) занимаются ею в старших классах.

Пример 7. Серия задач на решение систем линейных уравнений и неравенств, или система квадратных уравнений с целыми корнями, типа:

x + 2y = 19 x + y = 13 3y < 15
3x + y = 22 x y = 42 x + y < 8

Эти задачи в начальной школе дети легко решают подбором. Такие задачи можно давать и с сюжетом, с текстом — тогда детям нужно превратить текст в уравнения.

Пример 8. Вероятность. В пятом классе я давала задачу, которую дети решали парами. Каждая пара получала две игральных кости разного цвета. Нужно было выяснить, какую часть всех бросков составляют те, в которых есть хотя бы одна цифра 4. Результаты записывались, суммировались, затем полученное отношение числа таких бросков к числу всех бросков сравнивали с долей двузначных чисел с четверкой среди всех тридцати шести возможных чисел.

Список примеров, задач и разнообразных видов деятельности можно продолжить, но, думаю, главное понятно. Ученик в школе не только получает знания, но и учится учиться, учится подходу к проблеме, задаче — не только интеллектуальному, но и эмоциональному. Поэтому, как мне кажется, важно, чтобы математику уже в начальной школе вел учитель, который ее знает и любит. Начальная школа должна выводить на «большую» математику, или, точнее — «большая» математика должна начинаться в начальной школе.

© 2015 Sofarider Inc. All rights reserved. WordPress theme by Dameer DJ.